Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4405 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Seasonal and diel patterns in the migrations of fishes between a river and a floodplain tributary
The population behaviours associated with the migrations of fishes in lowland river ecosystems are amongst the most poorly-understood dispersal mechanisms of temperate freshwater organisms. This study evaluated the influence of four environmental variables (light levels, river discharge, water temperature and water velocity) on the timing, intensity and direction of fish movements between the River Avon (Hampshire, England) and a small floodplain tributary, Ibsley Brook, over a 12-month period. Using canonical correspondence analysis (CCA) to identify patterns of movement (by groups of species) and the relative strengths of explanatory variables in the data, the probability of fishes migrating between the river and tributary was determined using Bayesian modelling. The intensity and direction of fish movements between the river and tributary varied temporally, both on a diel and seasonal basis, and there were species- and age-specific patterns in behaviour. Diel movements appeared to be triggered by changes in light intensity and brook water velocity, whereas seasonal movements were mostly driven by changes in river discharge and water temperature, particularly those associated with floods. This study emphasises the importance of connectivity in river systems, as fishes migrated in all conditions, but especially during rapidly- rising discharge. ecosystem function; habitat connectivity; habitat fragmentation; habitat use; river discharge; water velocity
Located in Resources / Climate Science Documents
File PDF document Do small tributaries function as refuges from floods? A test in a salmonid-dominated mountainous river
Excerpts from the text: On 8–10 August 2003, a powerful typhoon hit Hokkaido Island, Japan, accompanied with heavy rain, which allowed us to investigate the potential role of tributaries as refuges from flooding. We had just completed annual population census in four small tributaries of a river system 1–2 days before the typhoon.... Overall, our results did not support the hypothesis that many large fishes immigrate to small tributaries during floods. ... Despite the lack of evidence of mass movement, our result suggested a few immigrants from the main stem (i.e., juvenile white-spotted charr, sculpin and a few relatively large Dolly Varden). Because more than 100 small tributaries exist in the Shiisorapuchi River (Koizumi 2011), only a few individuals escaping to each tributary should accumulate to a great number enough to re-colonise main stem habitats even if fishes in the main stem were extirpated. Multiple refuges at different spatial scales should increase resistance and ⁄ or resilience of fish populations (Sedell et al. 1990; Pearsons et al. 1992). Thus, the roles of tributaries as refuges would deserve further attention
Located in Resources / Climate Science Documents
File PDF document Characteristics, distribution and geomorphic role of large woody debris in a mountain stream of the Chilean Andes
The paper presents an analysis of amounts, characteristics and morphological impact of large woody debris (LWD) in the Tres Arroyos stream, draining an old-growth forested basin (9·1 km2) of the Chilean Southern Andes. Large woody debris has been surveyed along a 1·5 km long channel section with an average slope of 0·07 and a general step–pool/cascade morphology. Specific wood storage is very high (656 –710 m3 ha−1), comparable to that recorded in old-growth forested basins in the Pacific Northwest. Half of the LWD elements were located on the active floodplain, and around two-thirds of LWD elements were found in accumula- tions. Different types of log jam were observed, some heavily altering channel morphology (log-steps and valley jams), while others just line the channel edges (bankfull bench jams). Log-steps represent approximately 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1600 m3 of sediment is stored in the main channel behind LWD structures, corresponding to approximately 150% of the annual sediment yield. Keywords: large woody debris; channel morphology; valley jams; log-steps; Andes; stream sediment: sediment traps
Located in Resources / Climate Science Documents
File PDF document Distribution and characterization of in‐channel large wood in relation to geomorphic patterns on a low‐gradient river
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests
Located in Resources / Climate Science Documents
File PDF document The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion
A ‘floodplain large-wood cycle’ is hypothesized as a mechanism for generating landforms and influencing river dynamics in ways that structure and maintain riparian and aquatic ecosystems of forested alluvial river valleys of the Pacific coastal temperate rainforest of North America. In the cycle, pieces of wood large enough to resist fluvial transport and remain in river channels initiate and stabilize wood jams, which in turn create alluvial patches and protect them from erosion. These stable patches provide sites for trees to ma- ture over hundreds of years in river valleys where the average cycle of floodplain turnover is much briefer, thus providing a future source of large wood and reinforcing the cycle. Different tree species can function in the floodplain large-wood cycle in different ecological regions, in different river valleys within regions, and within individual river valleys in which forest composition changes through time. The cycle promotes a physically complex, biodiverse, and self-reinforcing state. Conversely, loss of large trees from the system drives landforms and ecosystems toward an alternate stable state of diminished biogeomorphic complexity. Reestablishing large trees is thus necessary to restore such rivers. Although interactions and mechanisms may differ between biomes and in larger or smaller rivers, available evidence suggests that large riparian trees may have similarly fundamental roles in the physical and biotic structuring of river valleys elsewhere in the temperate zone. Dead wood; woody debris; stream; river; habitat; fish
Located in Resources / Climate Science Documents
File PDF document The use of large wood in stream restoration: experiences from 50 projects in Germany and Austria
1. Wood is increasingly used in restoration projects to improve the hydromorphological and ecological status of streams and rivers. However, despite their growing importance, only a few of these projects are described in the open literature. To aid practitioners, we conducted a postal mail survey to summarize the experiences gained in central Europe and compile data on 50 projects. 2. Our results indicated the potential for improvement from an ecological point of view, as the number and total wood volume, and the median volume of single wood structures placed in the streams per project, were low compared with the potential natural state. Moreover, many wood structures were placed nearly parallel to the water flow, reducing their beneficial effect on stream hydraulics and morphology. 3. Restoration success has been monitored in only 58% of the projects. General con- clusions drawn include the following. (i) The potential effects of wood placement must be evaluated within a watershed and reach-scale context. (ii) Wood measures are most successful if they mimic natural wood. (iii) Effects of wood structures on stream morphology are strongly dependent on conditions such as stream size and hydrology. (iv) Wood placement has positive effects on several fish species. (v) Most projects revealed a rapid improvement of the hydromorphological status. 4. Most of the wood structures have been fixed, called ‘hard engineering’. However, soft engineering methods (use of non-fixed wood structures) are known to result in more natural channel features for individual stream types, sizes and sites, and are significantly more cost-effective. 5. Synthesis and applications. Large wood has been used successfully in several projects in central Europe, predominantly to increase the general structural complexity using fixed wood structures. Our results recommend the use of less costly soft engineering techniques (non-fixed wood structures), higher amounts of wood, larger wood struc- tures and improved monitoring programmes for future restoration projects comparable with those in this study. We recommend the use of ‘passive restoration’ methods (restor- ing the process of wood recruitment on large scales) rather than ‘active restoration’ (placement of wood structures on a reach scale), as passive restoration avoids the risk of non-natural amounts or diversity of wood loading developing within streams. Local, active placement of wood structures must be considered as an interim measure until passive restoration methods have increased recruitment sufficiently. Key-words: alpine streams, lowland streams, monitoring, mountain streams, passive restoration, restoration success, soft-engineering, woody debris
Located in Resources / Climate Science Documents
File PDF document A LIDAR‐DERIVED EVALUATION OF WATERSHED‐SCALE LARGE WOODY DEBRIS SOURCES AND RECRUITMENT MECHANISMS: COASTAL MAINE, USA
In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained. We developed a rapid and spatially extensive method for using light detection and ranging data to do the following: (i) estimate tree height and recruitable tree abundance throughout a watershed; (ii) determine the likelihood for the stream to recruit channel‐spanning trees at reach scales and assess whether mass wasting or channel migration is a dominant recruitment mechanism; and (iii) understand the contemporary and future distribution of LWD at a watershed scale. We utilized this method on the 78‐km‐long Narraguagus River in coastal Maine and found that potential channel‐spanning LWD composes approximately 6% of the valley area over the course of the river and is concentrated in spatially discrete reaches along the stream, with 5 km of the river valley accounting for 50% of the total potential LWD found in the system. We also determined that 83% of all potential LWD is located on valley sides, as opposed to 17% on floodplain and terrace surfaces. Approximately 3% of channel‐spanning vegetation along the river is located within one channel width of the stream. By examining topographic and morphologic variables (valley width, channel sinuosity, valley‐ side slope) over the length of the stream, we evaluated the dominant recruitment processes along the river and often found a spatial disconnect between the location of potential channel‐spanning LWD and recruitment mechanisms, which likely explains the low levels of LWD currently found in the system. This rapid method for identification of LWD sources is extendable to other basins and may prove valuable in locating future restoration projects aimed at increasing habitat quality through wood additions. key words: large woody debris; lidar; river restoration; habitat
Located in Resources / Climate Science Documents
File PDF document Effects of Flow Regulation on Shallow-Water Habitat Dynamics and Floodplain Connectivity
Our study examined the effects of flow regulation on the spatiotemporal availability of shallow habitat patches with slow current velocity (SSCV patches) and floodplain inundation in the unregulated Yellowstone River and the regulated Missouri River in Montana and North Dakota. We mapped representative sites and used hydraulic models and hydrograph data to describe the frequency and extent of floodplain inundation and the availability of SSCV habitat over time during different water years. In the Yellowstone River the distribution, location, and size of SSCV patches varied but followed an annual pattern that was tied to the snowmelt runoff hydrograph. There was less variation in patch distribution in the Missouri River, and the pattern of habitat availability was influenced by flow regulation. Regulated flows and their effects on channel mor- phology and patterns of vegetation establishment resulted in 3.0–3.5 times less area of inundated woody vegetation during normal and dry years in the Missouri River compared with the Yellow- stone River. The differences we observed in SSCV patch dynamics between rivers may have implications for fish populations and community structure through affecting the survival of early life stages. At a larger scale, the smaller area of vegetation inundated in the Missouri River suggests that nutrient cycling and the ecological benefits associated with a moving littoral zone are reduced by the altered flow and sediment regime in that river. Accurate assessments of the effects of flow alteration and successful efforts to restore riverine ecosystems will require consideration of physical and biotic processes that operate at multiple spatial and temporal scales.
Located in Resources / Climate Science Documents
File PDF document Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems
Located in Resources / Climate Science Documents
File PDF document 1.5°C or 2°C: a conduit’s view from the science-policy interface at COP20 in Lima, Peru
An average global 2°C warming compared to pre-industrial times is commonly understood as the most important target in climate policy negotiations. It is a temperature target indicative of a fiercely debated threshold between what some consider acceptable warming and warming that implies dangerous anthropogenic interference with the climate system and hence to be avoided. Although this 2°C target has been officially endorsed as scientifically sound and justified in the Copenhagen Report issued by the 15th Conference of the Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC) in 2009, the large majority of countries (over two-thirds) that have signed and ratified the UNFCCC strongly object to this target as the core of the long-term goal of keeping temperatures below a certain danger level. Instead, they promote a 1.5°C target as a more adequate limit for dangerous interference. At COP16 in Cancun, parties to the convention recognized the need to consider strengthening the long-term global goal in the so-called 2013–2015 Review, given improved scientific knowledge, including the possible adoption of the 1.5°C target. In this perspective piece, I examine the discussions of a structured expert dialogue (SED) between selected Intergovernmental Panel on Climate Change (IPCC) authors, myself included, and parties to the convention to assess the adequacy of the long-term goal. I pay particular attention to the uneven geographies and power differentials that lay behind the ongoing political debate regarding an adequate target for protecting ecosystems, food security, and sustainable development.
Located in Resources / Climate Science Documents