Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4412 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Person Loesch, Mike
Located in Expertise Search
File PDF document Loftin 2006.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Logging Debris Matters: Better Soil, Fewer Invasive Plants
The logging debris that remains after timber harvest traditionally has been seen as a nuisance. It can make subsequent tree planting more difficult and become fuel for wildfire. It is commonly piled, burned, or taken off site. Logging debris, however, contains significant amounts of carbon and nitrogen—elements critical to soil productivity. Its physical presence in the regenerating forest creates microclimates that influence a broad range of soil and plant processes. Researchers Tim Harrington of the Pacific Northwest Research Station; Robert Slesak, a soil scientist with the Minnesota Forest Resources Council; and Stephen Schoenholtz, a professor of forest hydrology and soils at Virginia Tech, conducted a five-year study at two sites in Washington and Oregon to see how retaining logging debris affected the soil and other growing conditions at each locale. They found that keeping logging debris in place improved soil fertility, especially in areas with coarse-textured, nutrient-poor soils. Soil nitrogen and other nutrients important to tree growth increased, and soil water availability increased due to the debris’ mulching effect. The debris cooled the soil, which slowed the breakdown and release of soil carbon into the atmosphere. It also helped prevent invasive species such as Scotch broom and trailing blackberry from dominating the sites. Forest managers are using this information to help maximize the land’s productivity while reducing their costs associated with debris disposal.
Located in Resources / Climate Science Documents
Image Octet Stream Logging Truck North Carolina
The Golden-winged warbler needs "young forest" habitat for nesting created by doing a selective harvest that can restore forest health and improve habitat for game species like white-tailed deer, ruffed grouse, and wild turkey.
Located in Resources / Images
Image Login_Filezilla
Located in Help / Help Images
File PDF document Lomte Barhanpurkar 1979.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Lomte Jadhav 1980.pdf
Located in Resources / TRB Library / LEW-MAR
Person C header Loncarich, Frank
Located in Expertise Search
File PDF document Long et al 1984.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Long term climate implications of 2050 emission reduction targets
A coupled atmosphere-ocean-carbon cycle model is used to examine the long term climate implications of various 2050 greenhouse gas emission reduction targets. All emission targets considered with less than 60% global reduction by 2050 break the 2.0°C threshold warming this century, a number that some have argued represents an upper bound on manageable climate warming. Even when emissions are stabilized at 90% below present levels at 2050, this 2.0°C threshold is eventually broken. Our results suggest that if a 2.0°C warming is to be avoided, direct CO2 capture from the air, together with subsequent sequestration, would eventually have to be introduced in addition to sustained 90% global carbon emissions reductions by 2050.
Located in Resources / Climate Science Documents