Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Quantifying the Extent of North American Mammal Extinction Relative to the Pre-Anthropogenic Baseline

Earth has experienced five major extinction events in the past 450 million years. Many scientists suggest we are now witnessing a sixth, driven by human impacts. However, it has been difficult to quantify the real extent of the current extinction episode, either for a given taxonomic group at the continental scale or for the worldwide biota, largely because comparisons of pre-anthropogenic and anthropogenic biodiversity baselines have been unavailable. Here, we compute those baselines for mammals of temperate North America, using a sampling-standardized rich fossil record to reconstruct species-area relationships for a series of time slices ranging from 30 million to 500 years ago. We show that shortly after humans first arrived in North America, mammalian diversity dropped to become at least 15%–42% too low compared to the ‘‘normal’’ diversity baseline that had existed for millions of years. While the Holocene reduction in North American mammal diversity has long been recognized qualitatively, our results provide a quantitative measure that clarifies how significant the diversity reduction actually was. If mass extinctions are defined as loss of at least 75% of species on a global scale, our data suggest that North American mammals had already progressed one-fifth to more than halfway (depending on biogeographic province) towards that benchmark, even before industrialized society began to affect them. Data currently are not available to make similar quantitative estimates for other continents, but qualitative declines in Holocene mammal diversity are also widely recognized in South America, Eurasia, and Australia. Extending our methodology to mammals in these areas, as well as to other taxa where possible, would provide a reasonable way to assess the magnitude of global extinction, the biodiversity impact of extinctions of currently threatened species, and the efficacy of conservation efforts into the future.

Read More…

Keeping up with a warming world; assessing the rate of adaptation to climate change

The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase without loss of biodiversity.The rate of adaptation will primarily be set by the rate of microevolution since (i) phenotypic plasticity alone is not sufficient as reaction norms will no longer be adaptive and hence microevolution on the reaction norm is needed, (ii) learning will be favourable to the individual but cannot be passed on to the next generations, (iii) maternal effects may play a role but, as with other forms of phenotypic plasticity, the response of offspring to the maternal cues will no longer be adaptive in a changing environment, and (iv) adaptation via immigration of individuals with genotypes adapted to warmer environments also involves microevolution as these genotypes are better adapted in terms of temperature, but not in terms of, for instance, photoperiod.Long-term studies on wild populations with individually known animals play an essential role in detecting and understanding the temporal trends in life-history traits, and to estimate the heritability of, and selection pressures on, life-history traits. However, additional measurements on other trophic levels and on the mechanisms underlying phenotypic plasticity are needed to predict the rate of microevolution, especially under changing conditions. Using this knowledge on heritability of, and selection on, life-history traits, in combination with climate scenarios, we will be able to predict the rate of adaptation for different climate scenarios. The final step is to use ecoevolutionary dynamical models to make the link to population viability and from there to biodiversity loss for those scenarios where the rate of adaptation is insufficient. Keywords: climate change; phenology; microevolution; phenotypic plasticity; intergovernmental panel on climate change; scenario

Read More…

Impact of terrestrial biosphere carbon exchanges on the anomalous CO2 increase in 2002–2003

Concluding paragraphs: In general, we find that the remarkable feature of the 2002– 2003 anomaly seems to be that climate fluctuations, not only related to El Nin ̃o and occurring across all latitudes, acted together to create an unusually strong outgasing of CO2 of the terrestrial biosphere. Further research will be required to investigate if this fluctuation carries features of projected future climate change and the CO2 growth rate anomaly has been a first indicator of a developing positive feedback between climate warming and the global carbon cycle.

Read More…

Rapid shifts in plant distribution with recent climate change

A change in climate would be expected to shift plant distribution as species expand in newly favorable areas and decline in increas- ingly hostile locations. We compared surveys of plant cover that were made in 1977 and 2006–2007 along a 2,314-m elevation gradient in Southern California’s Santa Rosa Mountains. Southern California’s climate warmed at the surface, the precipitation vari- ability increased, and the amount of snow decreased during the 30-year period preceding the second survey. We found that the average elevation of the dominant plant species rose by 􏱨65 m between the surveys. This shift cannot be attributed to changes in air pollution or fire frequency and appears to be a consequence of changes in regional climate. plant migration 􏱥 range shift

Read More…

Space observations of inland water bodies show rapid surface warming since 1985

Surface temperatures were extracted from nighttime thermal infrared imagery of 167 large inland water bodies distributed worldwide beginning in 1985 for the months July through September and January through March. Results indicate that the mean nighttime surface water temperature has been rapidly warming for the period 1985–2009 with an average rate of 0.045 ± 0.011°C yr−1 and rates as high as 0.10 ± 0.01°C yr−1. Worldwide the data show far greater warming in the mid‐ and high latitudes of the northern hemisphere than in low latitudes and the southern hemisphere.

Read More…

Projected climate-induced faunal change in the Western Hemisphere

Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere–ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.

Read More…

Stability and Diversity of Ecosystems

Understanding the relationship between diversity and stability requires a knowledge of how species interact with each other and how each is affected by the environment. The relationship is also complex, because the concept of stability is multifaceted; different types of stability describing different properties of ecosystems lead to multiple diversity-stability relationships. A growing number of empirical studies demonstrate positive diversity-stability relationships. These studies, however, have emphasized only a few types of stability, and they rarely uncover the mechanisms responsible for stability. Because anthropogenic changes often affect stability and diversity simultaneously, diversity-stability relationships cannot be understood outside the context of the environmental drivers affecting both. This shifts attention away from diversity-stability relationships toward the multiple factors, including diversity, that dictate the stability of ecosystems.

Read More…

Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments

Restoring characteristic fire regimes and forest structures are central objectives of many restoration and fuel reduction projects. Within-stand spatial pattern is a fundamental attribute of forest structure and influences many ecological processes and ecosystem functions. In this review we synthesize the available spatial reference information for fire-frequent pine and mixed-conifer forests in western North America; interpret this information in the context of restoration and fuel reduction treatment design; and identify areas for future research, including recommended approaches for quantifying within-stand tree spatial patterns. We identified 50 studies of tree spatial patterns in fire-frequent pine and mixed conifer forests, 25 of which documented spatial reference conditions. The characteristic structure of fire-frequent forests is a mosaic of three elements: openings, single trees, and clumps of trees with adjacent or interlocking crowns. This mosaic structure typically manifests at scales <0.4 ha, but sometimes extends to scales as large as 4 ha, particularly on sites with fire regimes that include both low- and moderate-severity fires. We documented preferential use of global pattern analysis techniques (90% of analyses) relative to local analysis techniques (10% of analyses). Ripley’s K statistic, an example of global spatial pattern analysis, was the most frequently used analytic technique (38% of analyses). These findings are important because global pattern analysis does not explicitly quantify spatial heterogeneity within a pattern, the very thing spatial reference studies seek to characterize and one of the core structural attributes treatments aim to restore. Based on these findings, we encourage managers to consciously adopt a view of forest structure that accommodates spatial heterogeneity within forest stands, and to use this conceptualization of forest structure to guide prescription development. Restoration prescriptions and marking guidelines that explicitly incorporate within-stand spatial heterogeneity—such as by specifying the numbers and sizes of openings and tree clumps, and the number of widely-spaced single trees to retain per unit area—will improve the likelihood of restoring characteristic forest structures and the ecological processes such structures support. We infer that the near-exclusive use of global pattern analysis has limited the quan- tity and usability of spatial reference information available to managers, has also likely limited the development and testing of novel ecological hypotheses about pattern-generating mechanisms. Consequently, we recommend that forest scientists change how they quantify tree spatial patterns by complimenting the traditional global analysis methods with local pattern analysis techniques, which quantify spatial heterogeneity within a study area.

Read More…

Vegetation Responses to Extreme Hydrological Events: Sequence Matters

Extreme hydrological events such as flood and drought drive vegetation dynamics and are projected to increase in frequency in association with climate change, which could result in sequences of extreme events. However, experimental studies of vegetation re- sponses to climate have largely focused on responses to a trend in climate or to a single extreme event but have largely overlooked the potential for complex responses to specific sequences of extreme events. Here we document, on the basis of an experiment with seed- lings of three types of subtropical wetland tree species, that mortality can be amplified and growth can even be stimulated, depending on event sequence. Our findings indicate that the impacts of multiple extreme events cannot be modeled by simply summing the projected effects of individual extreme events but, rather, that models should take into account event sequences.

Read More…

The effect of changing climate on the frequency of absolute extreme events

n some areas of climate impact analysis, the possible impact of a changing mean climate has been dismissed by some writers either because of a belief that society can adapt to a slowly changing mean and/or because expected rates of future changes lie within or not far outside those experienced in the past. The two standard counter arguments to this optimistic view are: (1) the future will lead to much longer periods of protracted change in one direction, with final conditions well into the no-analogue region; and/or (2) the main impacts will accrue through changes in the frequency of extremes. In the literature on greenhouse effect, lip service is often paid to the effect of changes in the frequency of extremes. But just how will a slowly changing mean affect the frequency of extremes?

Read More…

How Does It Feel to Be Like a Rolling Stone? Ten Questions About Dispersal Evolution

This review proposes ten tentative answers to frequently asked ques- tions about dispersal evolution. I examine methodological issues, model assumptions and predictions, and their relation to empirical data. Study of dispersal evolution points to the many ecological and genetic feedbacks affecting the evolution of this complex trait, which has contributed to our better understanding of life-history evolution in spatially structured populations. Several lines of research are suggested to ameliorate the exchanges between theoretical and empirical studies of dispersal evolution.

Read More…

From Individual Dispersal to Species Ranges: Perspectives for a Changing World

Dispersal is often risky to the individual, yet the long-term survival of populations depends on having a sufficient number of individuals that move, find each other, and locate suitable breeding habitats. This tension has consequences that rarely meet our conservation or management goals. This is particularly true in changing environments, which makes the study of dispersal urgently topical in a world plagued with habitat loss, climate change, and species introductions. Despite the difficulty of tracking mobile individuals over potentially vast ranges, recent research has revealed a multitude of ways in which dispersal evolution can either constrain, or accelerate, species’ responses to environmental changes.

Read More…

Montane meadow change during drought varies with background hydrologic regime and plant functional group

Key words:drought; forbs; hydrological gradient; plant community; woody plants. Abstract. Climate change models for many ecosystems predict more extreme climatic events in the future, including exacerbated drought conditions. Here we assess the effects of drought by quantifying temporal variation in community composition of a complex montane meadow landscape characterized by a hydrological gradient. The meadows occur in two regions of the Greater Yellowstone Ecosystem (Gallatin and Teton) and were classified into six categories (M1–M6, designating hydric to xeric) based upon Satellite pour l’Observation de la Terre (SPOT) satellite imagery. Both regions have similar plant communities, but patch sizes of meadows are much smaller in the Gallatin region. We measured changes in the percent cover of bare ground and plants by species and functional groups during five years between 1997 and 2007. We hypothesized that drought effects would not be manifested evenly across the hydrological gradient, but rather would be observed as hotspots of change in some areas and minimally evident in others. We also expected varying responses by plant functional groups (forbs vs. woody plants). Forbs, which typically use water from relatively shallow soils compared to woody plants, were expected to decrease in cover in mesic meadows, but increase in hydric meadows. Woody plants, such as Artemisia, were expected to increase, especially in mesic meadows. We identified several important trends in our meadow plant communities during this period of drought: (1) bare ground increased significantly in xeric meadows of both regions (Gallatin M6 and Teton M5) and in mesic (M3) meadows of the Teton, (2) forbs decreased significantly in the mesic and xeric meadows in both regions, (3) forbs increased in hydric (M1) meadows of the Gallatin region, and (4) woody species showed increases in M2 and M5 meadows of the Teton region and in M3 meadows of the Gallatin region. The woody response was dominated by changes in Artemisia spp. and Chrysothamnus viscidiflorus. Thus, our results supported our expectations that community change was not uniform across the landscape, but instead could be predicted based upon functional group responses to the spatial and temporal patterns of water availability, which are largely a function of plant water use and the hydrological gradient.

Read More…

Roles and Effects of Environmental Carbon Dioxide in Insect Life

Key Words behavior, olfaction, antennal lobe, herbivory, oviposition Abstract Carbon dioxide (CO2) is a ubiquitous sensory cue that plays mul- tiple roles in insect behavior. In recent years understanding of the well-known role of CO2 in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO2 cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO2 and important progress in our understanding of the detection and CNS processing of CO2 information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO2 levels may affect insect life.

Read More…

Virtual Hot Spots

Physiological ecologists who design computer models to predict how animals handle heat are forecasting the effects of climate change

Read More…

Implications of Limiting CO2 Concentrations for Land Use and Energy

Limiting atmospheric carbon dioxide (CO2) concentrations to low levels requires strategies to manage anthropogenic carbon emissions from terrestrial systems as well as fossil fuel and industrial sources. We explore the implications of fully integrating terrestrial systems and the energy system into a comprehensive mitigation regime that limits atmospheric CO2 concentrations. We find that this comprehensive approach lowers the cost of meeting environmental goals but also carries with it profound implications for agriculture: Unmanaged ecosystems and forests expand, and food crop and livestock prices rise. Finally, we find that future improvement in food crop productivity directly affects land-use change emissions, making the technology for growing crops potentially important for limiting atmospheric CO2 concentrations.

Read More…

The Biofuels Landscape Through the Lens of Industrial Chemistry

Replacing petroleum feedstock with biomass in the production of fuels and value-added chemicals carries considerable appeal. As in industrial chemistry more broadly, high-throughput experimentation has greatly facilitated innovation in small-scale exploration of biomass production and processing. Yet biomass is hard to transport, potentially hindering the integration of manufacturing-scale processes. Moreover, the path from laboratory breakthrough to commercial production remains as tortuous as ever.

Read More…

From plant to power

Petrol might yet survive the green revolution. Some investors are taking seriously the con- cept of ‘green gasoline’ — transforming the woody remains of plants into exact replicas of today’s transportation fuels. Many see promise because, unlike other biofuels, this product would blend smoothly into today’s petrol-driven infrastructure. “This is one I like. It’s got a chance of making it,” says Lanny Schmidt, a chemical engineer who works on combustion processes and alternative fuels at the University of Minnesota in Minneapolis. Yet this ‘biomass-to-liquid’ approach is one of the least known in the biofuels portfolio, and barely makes a dent in alternative fuel quotas.

Read More…

Regional carbon dioxide implications of forest bioenergy production

Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2–14% (46–405 Tg C) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30–60 g C m−2 yr−1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

Read More…

Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems

Abstract. Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock–Douglas-fir forests, and the Coast Range western hemlock–Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of some east Cascades ponderosa pine stands with uncharacteristic levels of understory fuel accumulation. Balancing a demand for maximal landscape C storage with the demand for reduced wildfire severity will likely require treatments to be applied strategically throughout the landscape rather than indiscriminately treating all stands. Key words: biofuels; carbon sequestration; fire ecology; fuel reduction treatment; Pacific Northwest, USA; Picea sitchensis; Pinus ponderosa; Pseudotsuga menziesii.

Read More…