Videos
Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity
Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia’s intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society’s preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.
METABOLISM AS A CURRENCY AND CONSTRAINT IN ECOLOGY Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy
We test for the existence of asymmetries in consumer–resource thermal responses by analy- sing an extensive database on thermal response curves of ecological traits for 309 species spanning 15 orders of magnitude in body size from terrestrial, marine and freshwater habitats. We find that asymmetries in consumer–resource thermal responses are likely to be a common occurrence.Overall, our study reveals the importance of asymmetric thermal responses in consumer–resource dynamics. In particular, we identify three general types of asymmetries: (i) different levels of performance of the response, (ii) different rates of response (e.g. activation energies) and (iii) different peak or optimal temperatures. Such asymmetries should occur more frequently as the climate changes and species’ geographical distributions and phenologies are altered, such that previously noninteracting species come into contact.By using characteristics of trophic interactions that are often well known, such as body size, foraging strategy, thermy and environmental temperature, our framework should allow more accurate predictions about the thermal dependence of consumer–resource interactions. Ultimately, integration of our theory into models of food web and ecosystem dynamics should be useful in understanding how natural systems will respond to current and future temperature change.
Effect of fine wood on juvenile brown trout behaviour in experimental stream channels
In-stream wood can increase shelter availability and prey abundance for stream-living fish such as brown trout, Salmo trutta, but the input of wood to streams has decreased in recent years due to harvesting of riparian vegetation. During the last decades, fine wood (FW) has been increasingly used for biofuel, and the input of FW to streams may therefore decrease. Although effects of in-stream FW have not been studied as extensively as those of large wood (LW), it is probably important as shelter for small-sized trout. In a laboratory stream experiment, we tested the behavioural response of young-of-the-year wild brown trout to three densities of FW, with trout tested alone and in groups of four. Video recordings were used to measure the proportion of time allocated to sheltering, cruising and foraging, as well as the number of aggressive interactions and prey attacks. Cruising activity increased with decreasing FW density and was higher in the four-fish groups than when fish were alone. Foraging decreased and time spent sheltering in FW increased with increasing FW density. Our study shows that juvenile trout activity is higher in higher fish densities and that trout response to FW is related to FW density and differs from the response to LW as reported by others.
Data Needs Assessment Foundational Research
The Data Needs Assessment research project was undertaken to review a variety of resources on conservation planning - such as datasets and tools - and provide packages of products, data, and identified gaps to improve conservation planning in the Appalachian LCC. A suite of core conservation planning products and data from principal investigators at Clemson University are found below. These products and information generated from this foundational assessment were incorporated into the Interactive Conservation Planning and Design effort and in the drafting of the regional conservation plan for the Cooperative.
Conservation Planning and Design: NatureScape
The Appalachian NatureScape Design incorporates and models newly developed data and information from all Appalachian LCC funded research projects as well as key existing datasets from partners to produce a series of maps that integrate aquatic connectivity with terrestrial significant habitats to guide conservation planning and decision making.
Data Needs Assessment Foundational Research for Appalachian Region
The Data Needs Assessment research project was undertaken to review a variety of resources on conservation planning - such as datasets and tools - and provide packages of products, data, and identified gaps to improve conservation planning in the Appalachian Region. A suite of core conservation planning products and data from principal investigators at Clemson University are found below. These products and information generated from this foundational assessment were incorporated into the Interactive Conservation Planning and Design effort and in the drafting of the regional conservation plan for the Cooperative.
Data Needs Assessment Foundational Research
The Data Needs Assessment research project was undertaken to review a variety of resources on conservation planning - such as datasets and tools - and provide packages of products, data, and identified gaps to improve conservation planning in the Appalachian LCC. A suite of core conservation planning products and data from principal investigators at Clemson University are found below. These products and information generated from this foundational assessment were incorporated into the Interactive Conservation Planning and Design effort and in the drafting of the regional conservation plan for the Cooperative.
LANDFIRE Data Applications for Research in Fire Ecology, Forest Mgmt in California
Brandon Collins presents the second in a series of webinars that LANDFIRE co-hosts with the California Fire Science Consortium. Collins is a USFS Research Forester based in Davis, CA, whose interests involve characterizing effects of fire and fuels treatments on forests at both the stand and landscape levels. He says, "My research intends to provide meaningful information to managers interested in improving forest resiliency and incorporating more natural fire-vegetation dynamics across landscapes."
Protecting the Tennessee River Gorge
A video documenting why the Tennessee River Gorge Trust's work is necessary.
Conserving Imperiled Aquatic Species in the UTRB
A team of U.S. Fish and Wildlife Service scientists, with assistance from U.S. Geological Survey, have developed a collaborative conservation strategy examining cost-effective approaches for efforts to conserve and manage 36 imperiled freshwater fish and mussel species in the 22,360 square-mile Upper Tennessee River Basin.
Video Presentation: Interactive Conservation Planning & Design
This video presentation from Paul Leonard of the Appalachian LCC and Clemson University walks through the development of a regional conservation plan for the Cooperative using an interactive and iterative spatial prioritization framework. Using available data and modeling approaches, researchers from Clemson University developed a suite of conservation planning models that include site selection, ecological threat assessments, and broad ranging habitat and ecological connectivity analyses. The research team worked closely with steering committee-organized technical teams from each major region in our LCC to help guide the iterative feedback loops which informed the conservation design. The research team is now working on the second phase of this conservation planning and design modeling that will integrate aquatic and cultural resource components into the design work.
Environmental Educator Broadcast: Landscape Conservation Cooperatives
On August 26th, Appalachian LCC Coordinator Jean Brennan, National LCC Coordinator Elsa Haubold, and National LCC Communication Coordinator Laura McClean participated in a live broadcast that provided an update on the work of Landscape Conservation Cooperatives (LCCs) to environmental educators.
Environmental Flows from Water Withdrawals in the Marcellus Shale Region
The rivers and streams of the Central Appalachians are home to more than 200 species of fish and other aquatic life. They also provide a reliable source of drinking water, recreational opportunities and associated economic benefits to people living in large cities and surrounding communities. Stream Impacts from Water Withdrawals in the Marcellus Shale Region
Assessing Vulnerability of Species and Habitats to Large-scale Impacts: CCVA
New vulnerability assessments for 41 species and 3 habitats in the Appalachians are now available. The conservation community can view and search each of these assessments by relative raking or vulnerability scores, conservation status ranks, state and subregion of assessment, and higher taxonomy. In addition, principle investigators NaturServe compiled the results of 700 species assessments previously completed by other researchers as well as assessments on several habitats.
Classification and Mapping of Cave and Karst Resources
Cave and karst systems are unique environments that occur throughout the Appalachians. They provide habitat for a diverse array of species and are an important source of domestic water supply for Appalachian communities. However, a lack of classification and mapping information on these ecosystems creates a significant barrier to conservation.
Riparian Restoration Decision Support Tool
An innovative riparian planting and restoration decision support tool is now available to the conservation community. This user-friendly tool allows managers and decision-makers to rapidly identify and prioritize areas along the banks of rivers, streams, and lakes for restoration, making these ecosystems more resilient to disturbance and future changes in climate. It will also help the conservation community invest limited conservation dollars wisely, helping to deliver sustainable resources.
Marxan Good Practices Handbook
Overview of Marxan software and good use recommendations for its use in conservation planning and design.
2015 Annual Report
Since we began, the Appalachian LCC has worked to define data and conservation science needs, invest in gathering foundational data and priority research, and build a coordinated network for those investments to pay off. Many of our funded research projects are now beginning to deliver important science information and tools to support landscape conservation for the valued natural and cultural resources in the Appalachians.